
Deep Learning for Data Science
DS 542

https://dl4ds.github.io/fa2025/
Deep Neural Networks

Original slides by Tom Gardos,
other content from Understanding Deep Learning unless otherwise cited

1

https://dl4ds.github.io/fa2025/

Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks

Composing two networks.

Network 1:

Network 2:

Composing two networks: Example
Assume:
• ReLU Activation
• Slopes and Intercepts

as shown
• 3 hidden units in each

Example: Pick parameters so that
𝑥 ∈ [−1,1] maps to
𝑦 ∈ [−1,1] with alternating slope

Composing two networks: Example
Assume:
• ReLU Activation
• Slopes and Intercepts

as shown
• 3 hidden units in each

Example: Pick parameters so that
𝑥 ∈ [−1,1] maps to
𝑦 ∈ [−1,1] with alternating slope

Let’s see what
happens when we

map
 𝑥 → 𝑦 → 𝑦′

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

0.0

-1.0 0.0
-1.0

1.0

1.0

“Folding analogy”

Interactive Figure 4.1 – Concatenating Nets

https://udlbook.github.io/udlfigures/

https://udlbook.github.io/udlfigures/

Comparing to shallow with six hidden units

• 20 parameters
• (at least) 9 regions

• 19 parameters
• Max 7 regions

Composing networks in 2D

Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks

Combine two networks into one

Network 1:
(input is 𝑥)

Network 2:
(input is 𝑦)

𝜃 : theta
𝜙 : phi

Let’s start with 2 networks:

Combine two networks into one

Network 1:
(input is 𝑥)

Network 2:
(input is 𝑦)

Substitute for 𝑦 to get hidden units of second network in terms of first:

𝜃 : theta
𝜙 : phi

Let’s start with 2 networks:

Create new variables: 𝜓 (psi)
𝜃 : theta
𝜙 : phi
𝜓 : psi

Hidden units of 2nd network in terms of hidden units of first network.

Collect and rename the variables for conciseness.

We get a two-layer network
𝜃 : theta
𝜙 : phi
𝜓 : psi

Two-layer network as one equation
𝜃 : theta
𝜙 : phi
𝜓 : psi

Remember shallow network with two outputs?

• 1 input, 4 hidden units, 2 outputs

Networks as composing functions

Consider the pre-activations at the second hidden units
At this point, it’s a one--layer network with three outputs

Networks as composing functions

Consider the pre-activations at the second hidden units
At this point, it’s a one--layer network with three outputs

Let’s walk through example activations
starting with pre-activations to the 2nd
layer.

2nd
 L

ay
er

 P
re

-a
ct

iv
at

io
ns

Like a shallow network with three hidden units and three outputs.

2nd
 L

ay
er

 A
ct

iv
at

io
ns

2nd
 L

ay
er

 P
re

-a
ct

iv
at

io
ns

2nd
 L

ay
er

 A
ct

iv
at

io
ns

2nd
 L

ay
er

 W
ei

gh
te

d
Ac

tiv
at

io
ns

2nd
 L

ay
er

 W
ei

gh
te

d
Ac

tiv
at

io
ns

Summed and Offset

2nd Analogy:
Create new functions
which are clipped
and recombined.

Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks

Hyperparameters

Hyperparameter Tuning with

Ray Tune

• K layers = depth of network
• 𝐷𝑘 hidden units per layer = width of network

• These are called hyperparameters – chosen before training the
network

• Can try retraining with different hyperparameters –
hyperparameter optimization or hyperparameter search
• This can be either manual or automated (e.g. Hyperparameter Tuning with

Ray Tune)

https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html

Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks

Propose 3 notation changes to be
able to generalize to arbitrary
deep neural networks.

Notation change #1

Notation change #1
Vector Notation

Notation change #1
Vector Notation

Vector & Matrix Notation

Notation change #1

Notation change #2
Notation Reminder
𝑥, 𝜓 : normal lower case -- scalar
𝒙,𝝍 : bold face lower case -- vector
𝑿,𝚿 : bold face upper case -- matrix

𝐡 = 𝐚[𝜽𝟎 + 𝜽𝟏𝑥]

𝐡′ = 𝐚[𝝍𝟎 +𝚿𝐡]

𝑦′ = 𝜙′0 +𝝓′𝑻𝐡′

Notation change #3
𝜔 : omega
Ω : Omega

Notation change #3 Bias
vector

Weight
matrix

𝜔 : omega
Ω : Omega

General equations for deep network

Example

Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks

Shallow vs. deep networks

The best results are created by deep networks with many layers.
• 50-1000 layers for most applications
• Best results in

• Computer vision
• Natural language processing
• Graph neural networks
• Generative models
• Reinforcement learning

All use deep networks.
But why?

Shallow vs. deep networks

1. Ability to approximate different functions?

Both obey the universal approximation theorem.

Argument: One layer is enough, and for deep networks could
arrange for the other layers to compute the identity function.

Shallow vs. deep networks

2. Number of linear regions per parameter

Number of linear regions per parameter

K = 5 layers
10 hidden units per layer

471 parameters
161,501 linear regions

Each small dot is
an additional
hidden unit per
layer.

Number of linear regions per parameter

5 layers
10 hidden units per layer

471 parameters
161,501 linear regions

5 layers
50 hidden units per layer

10,801 parameters
>1040 linear regions

Each small dot is
an additional
hidden unit per
layer.

Each small dot is
an additional 10
hidden units per
layer.

Shallow vs. deep networks

2. Number of linear regions per parameter

• Deep networks create many more regions per parameters
• But there are dependencies between them

• Think of folding example
• Perhaps similar symmetries in real-world functions? Unknown

Shallow vs. Deep Networks

3. Depth efficiency

• There are some functions that require a shallow network with
exponentially more hidden units than a deep network to achieve
an equivalent approximation

• This is known as the depth efficiency of deep networks

• But do the real-world functions we want to approximate have this
property? Unknown.

Shallow vs. Deep Networks

4. Large structured networks

• Think about images as input – might be 1M pixels
• Fully connected works not practical
• Answer is to have weights that only operate locally, and share across image
• This leads to convolutional networks
• Gradually integrate information from across the image – needs multiple

layers

Shallow vs. Deep Networks

5. Fitting and generalization

• Fitting of deep models seems to be easier up to about 20 layers
• Then needs various tricks to train deeper networks, so (in vanilla

form), fitting becomes harder
• Generalization is good in deep networks. Why?

Shallow vs. Deep Networks

5. Fitting and generalization

• Fitting of deep models is also faster

Tensorflow Playground Example?
• Try 2 inputs, 3 hidden units, 1 output
• You can inspect and/or edit weights and biases

70
playground.tensorflow.org

Do you ever get stuck in local minima?
Are you getting the expected number of
regions?

https://playground.tensorflow.org/

Where are we going?

• We have defined families of very flexible networks that map
multiple inputs to multiple outputs

• Now we need to train them
• How to choose loss functions for different types of targets (Read Ch. 5)
• How to find minima of the loss function
• How to do this efficiently with deep networks

• Then how do we evaluate them?

	Slide 1: Deep Learning for Data Science DS 542
	Slide 2: Deep neural networks
	Slide 3: Composing two networks.
	Slide 4: Composing two networks: Example
	Slide 5: Composing two networks: Example
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: “Folding analogy”
	Slide 28: Interactive Figure 4.1 – Concatenating Nets
	Slide 29: Comparing to shallow with six hidden units
	Slide 30: Composing networks in 2D
	Slide 31: Deep neural networks
	Slide 32: Combine two networks into one
	Slide 33: Combine two networks into one
	Slide 34: Create new variables: psi (psi)
	Slide 35: We get a two-layer network
	Slide 36: Two-layer network as one equation
	Slide 37: Remember shallow network with two outputs?
	Slide 38: Networks as composing functions
	Slide 39: Networks as composing functions
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Deep neural networks
	Slide 46: Hyperparameters
	Slide 47: Deep neural networks
	Slide 48: Propose 3 notation changes to be able to generalize to arbitrary deep neural networks.
	Slide 49: Notation change #1
	Slide 50: Notation change #1
	Slide 51: Notation change #1
	Slide 52: Notation change #1
	Slide 53: Notation change #2
	Slide 54: Notation change #3
	Slide 55: Notation change #3
	Slide 56: General equations for deep network
	Slide 57: Example
	Slide 58: Deep neural networks
	Slide 59: Shallow vs. deep networks
	Slide 60: Shallow vs. deep networks
	Slide 61: Shallow vs. deep networks
	Slide 62: Number of linear regions per parameter
	Slide 63: Number of linear regions per parameter
	Slide 65: Shallow vs. deep networks
	Slide 66: Shallow vs. Deep Networks
	Slide 67: Shallow vs. Deep Networks
	Slide 68: Shallow vs. Deep Networks
	Slide 69: Shallow vs. Deep Networks
	Slide 70: Tensorflow Playground Example?
	Slide 71: Where are we going?

