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Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks



Composing two networks.

Network 1:

Network 2:



Composing two networks: Example
Assume:
• ReLU Activation
• Slopes and Intercepts 

as shown
• 3 hidden units in each

Example: Pick parameters so that 
𝑥 ∈ [−1,1] maps to
𝑦 ∈ [−1,1] with alternating slope



Composing two networks: Example
Assume:
• ReLU Activation
• Slopes and Intercepts 

as shown
• 3 hidden units in each

Example: Pick parameters so that 
𝑥 ∈ [−1,1] maps to
𝑦 ∈ [−1,1] with alternating slope

Let’s see what 
happens when we 

map
 𝑥 → 𝑦 → 𝑦′
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“Folding analogy”



Interactive Figure 4.1 – Concatenating Nets

https://udlbook.github.io/udlfigures/ 

https://udlbook.github.io/udlfigures/


Comparing to shallow with six hidden units

• 20 parameters
• (at least) 9 regions

• 19 parameters
• Max 7 regions



Composing networks in 2D



Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks



Combine two networks into one

Network 1:
(input is 𝑥)

Network 2:
(input is 𝑦)

𝜃 : theta
𝜙 : phi

Let’s start with 2 networks:



Combine two networks into one

Network 1:
(input is 𝑥)

Network 2:
(input is 𝑦)

Substitute for 𝑦  to get hidden units of second network in terms of first:

𝜃 : theta
𝜙 : phi

Let’s start with 2 networks:



Create new variables: 𝜓 (psi)
𝜃 : theta
𝜙 : phi
𝜓 : psi

Hidden units of 2nd network in terms of hidden units of first network.

Collect and rename the variables for conciseness.



We get a two-layer network
𝜃 : theta
𝜙 : phi
𝜓 : psi



Two-layer network as one equation
𝜃 : theta
𝜙 : phi
𝜓 : psi



Remember shallow network with two outputs?

• 1 input, 4 hidden units, 2 outputs

      
    

   

   

         
    

   

   

   



Networks as composing functions

Consider the pre-activations at the second hidden units
At this point, it’s a one--layer network with three outputs



Networks as composing functions

Consider the pre-activations at the second hidden units
At this point, it’s a one--layer network with three outputs



Let’s walk through example activations 
starting with pre-activations to the 2nd 
layer.
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Like a shallow network with three hidden units and three outputs.
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Summed and Offset

2nd Analogy:
Create new functions 
which are clipped 
and recombined.



Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks



Hyperparameters

Hyperparameter Tuning with

Ray Tune

• K layers = depth of network
• 𝐷𝑘  hidden units per layer = width of network

• These are called hyperparameters – chosen before training the 
network

• Can try retraining with different hyperparameters – 
hyperparameter optimization or hyperparameter search
• This can be either manual or automated (e.g. Hyperparameter Tuning with 

Ray Tune) 

https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html


Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks



Propose 3 notation changes to be 
able to generalize to arbitrary 
deep neural networks.



Notation change #1



Notation change #1
Vector Notation



Notation change #1
Vector Notation

Vector & Matrix Notation



Notation change #1



Notation change #2
Notation Reminder
𝑥, 𝜓 : normal lower case -- scalar
𝒙,𝝍 : bold face lower case -- vector
𝑿,𝚿 : bold face upper case -- matrix

𝐡 = 𝐚[𝜽𝟎 + 𝜽𝟏𝑥]

𝐡′ = 𝐚[𝝍𝟎 +𝚿𝐡]

𝑦′ = 𝜙′0 +𝝓′𝑻𝐡′



Notation change #3
𝜔 : omega
Ω : Omega



Notation change #3 Bias 
vector

Weight 
matrix

𝜔 : omega
Ω : Omega



General equations for deep network



Example



Deep neural networks

• Composing two networks
• Combining the two networks into one
• Hyperparameters
• Notation change and general case
• Shallow vs. deep networks



Shallow vs. deep networks

The best results are created by deep networks with many layers. 
• 50-1000 layers for most applications
• Best results in 

• Computer vision
• Natural language processing
• Graph neural networks
• Generative models
• Reinforcement learning

All use deep networks.  
But why?



Shallow vs. deep networks

1. Ability to approximate different functions?

Both obey the universal approximation theorem.

Argument:  One layer is enough, and for deep networks could 
arrange for the other layers to compute the identity function.



Shallow vs. deep networks

2.  Number of linear regions per parameter

 



Number of linear regions per parameter

K = 5 layers
10 hidden units per layer

471 parameters
161,501 linear regions

Each small dot is 
an additional 
hidden unit per 
layer.



Number of linear regions per parameter

5 layers
10 hidden units per layer

471 parameters
161,501 linear regions

5 layers
50 hidden units per layer

10,801 parameters
>1040 linear regions

Each small dot is 
an additional 
hidden unit per 
layer.

Each small dot is 
an additional 10 
hidden units per 
layer.



Shallow vs. deep networks

2.  Number of linear regions per parameter

• Deep networks create many more regions per parameters
• But there are dependencies between them

• Think of folding example
• Perhaps similar symmetries in real-world functions? Unknown 



Shallow vs. Deep Networks

3. Depth efficiency

• There are some functions that require a shallow network with 
exponentially more hidden units than a deep network to achieve 
an equivalent approximation

• This is known as the depth efficiency of deep networks

• But do the real-world functions we want to approximate have this 
property?  Unknown.



Shallow vs. Deep Networks

4. Large structured networks

• Think about images as input – might be 1M pixels
• Fully connected works not practical
• Answer is to have weights that only operate locally, and share across image
• This leads to convolutional networks
• Gradually integrate information from across the image – needs multiple 

layers



Shallow vs. Deep Networks

5. Fitting and generalization

• Fitting of deep models seems to be easier up to about 20 layers
• Then needs various tricks to train deeper networks, so (in vanilla 

form), fitting becomes harder
• Generalization is good in deep networks. Why?



Shallow vs. Deep Networks

5. Fitting and generalization

• Fitting of deep models is also faster



Tensorflow Playground Example?
• Try 2 inputs, 3 hidden units, 1 output
• You can inspect and/or edit weights and biases

70
playground.tensorflow.org

Do you ever get stuck in local minima?
Are you getting the expected number of 
regions?

https://playground.tensorflow.org/


Where are we going?

• We have defined families of very flexible networks that map 
multiple inputs to multiple outputs

• Now we need to train them
• How to choose loss functions for different types of targets (Read Ch. 5)
• How to find minima of the loss function
• How to do this efficiently with deep networks

• Then how do we evaluate them?
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